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The linear approximation is used to study the stability of two- and three-dimension- 
al higher-order modes of a nonlinear wave equation against exponentially increasing 
perturbations. For all the nonlinear models considered the higher modes are un- 
stable; the number of exponentially increasing perturbations and their growth rate 
are determined by the mode number and the form of the nonlinear relationship. Nu- 
merical tests are described in the parabolic approximation on the stability of the 
first axially symmetric mode against small amplitude perturbations and the conditions 
are determined under which higher-order modes can be observed. 

In the simplest model of a noninertial nonlinear medium the propagation of electromag- 
netic waves in the scalar parabolic approximation is described by the equation [i, 2]. 
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where ~ is the complex envelope of the electromagnetic wave field, and y(I~I 2) describes 
the nonlinear part of the dielectric permittivity. The possible f(I~I =) for which there 
exist finite stationary solutions of the type 

,n=q%(r)  eXp (i?~), n=O,  i ,  2 . . . .  , ? ~> O, (2) 

have been studied in [3-5] where rather general theorems on the existence of solutions (2) 
have been obtained. If the stationary field distributions (2) are to be observed experimen- 
tally, it is necessary that they be stable against small phase and amplitude perturbations. 
A detailed study of stability for Eq. (i) has only been made for the principal mode, which 
has constant sign [4, 6-8]. The stability of the higher alternating mode ~n(n~ I) has 
not been investigated. 

Several propositions about the stability of the higher-order modes can be made from 
the results in [8-10]. Thus, for the stability of a stationary solution~nit is sufficient 
that the solution should minimize the functional 

H (~ )  ---- S [Iv~l ~ §  l~l ~ - F (l~l~)t dr, F (l~l ~) = .( / (n) dn (3 )  
0 

in some subspace of the total Hilbert function space. For some functions ] (1~]~) the prin- 
cipal mode ~0minimizes the functional (3) and therefore in the corresponding nonlinear media 
~0:is a stable solution [8]. The higher-order modes for arbitrary do not minimize 
(3) [8, i0] and this suggests that they are unstable. 

In order to test this assumption we have studied the stability of the higher-order modes 
for various nonlinear models. In the linear approximation the existence of exponentially 
increasing perturbations of the form (u + iv) exp(iyT + ~T) for a stationary solution ~is 
determined by the existence of real eigenvalues of the system of equations 

~ u = L o n v ;  ~ v =  --LlnU , (4) 
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2 where L0,~:: --A !=?--](%~); LI, ~=L0, .-9 d! 9,2 . If the system (4) has a solution u, v, fi, 

then • • -~, are also solutions. In what follows we limit the discussion to positive 
values of ~. Since for n.>~l the variational method is inapplicable to (4) we have employed 
numerical integration of these equations on a BESM-4 computer. 

The solution of (4) was sought for in the form 

. ' ~'cos m (I) . (cos m �9 
u,~ = u m  (r) • (sin m @; v ~  = v,,~ (r)X lsin m �9 

for a two-dimensional Laplacian h and in the form 

. u l ~  = uz~  (r) Y (0, (I)); vim = vim (r) Yz.~ (0,  (1)) 

for a three-dimensional Laplacian. 

A knowledge of the asymptotic representation of u~(r), v~(r) [or Ulm(r), V~m(r) ] for 
sufficiently large r,enabled us to integrate (4) and to test that the boundary condition 
u%(r),'v%(r)NrmI O r uzm(r), Vzm(r).,~r ~) as r § 0 was satisfied. If this condition was notor sat- 
isfied a correction was made to the eigenvalue and the calculations were repeated [ii]. 

The principal result from the numerical analysis of (4) was that for all nonlinear models 
we considered (]=~2p, 0<p~<2; f=~2/(i+~2)h, 0~k~1) in both the two- and three-dimensional 
cases real eigenvalues of (4) were found for the higher modes n ~>i. The number of exponen- 
tially increasing perturbations is determined by the mode number n, the values of y, and the 
form of the nonlinear relationship ~(T2). With f(~2) functions for which the principal mode 
4o is stable against exponentially increasing perturbations the number of nQndegenerate eigen- 
values of the system ~nm (or ~nm~) for the mode ~n is not less than n and for a fixed mode 

�9 �9 * 

number n the maxlmum exgenvalue ~n corresponds to the maximum possible m (or ~). In this 
case all exponentially increasing perturbations depend on the angles ~or ~, 0. If % is 
unstable against exponentially increasing perturbations, then the number Of nondegenerate 
positive eigenvalues ~n~ (or 9~nml) for the mode ~n is not less than n + 1 and the maximum 
elgenvalue ~n corresponds to = (or I = 0). In this case there exist perturbations which m--Z0 
do not depend on the angles. 

, 
If ](~2) increases without bound as ~2_>~ , then the value of ~n also increases without 

bound as the mode number n increases. Figure i shows how ~nm varies with the mode number for 
the axially symmetric modes of a cubic medium ]=~2, ?=I. If the maximum of the expression 

2 I (df/d ~ ) ~ I does not exceed M for 0<~ T~< ~, then ~/, as I~:I~AI'. From (4) we "can get 

~ (<ulu > + <v[v>)=<ulLo=l v> - -  <v ILl,d u> = 2 / v  ff~2 q~21 u ~ ,  
\ 1 %  I / 

and thus 

and 
q~n 

I~*[ <~ max d~ r .= M .  
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If a medium with a saturating nonlinearity is approximated by the function ]=~2/I+~ , then 
for all higher modes I~I-~<0.25 This result has been confirmed by numerical solution of 
(4). 

Thus, if the principal mode is unstable the higher modes cannot be observed because 
there are exponentially increasing perturbations which both depend on and do not depend on 
the angles. If the principal mode is stable, then the question of the stability of higher 
modes which are independent of angle is an open one. According to linear stability theory 
there are always perturbations for the solutions (2) [from Eq. (i)] which increase linearly 
with the time T [7-8]. Among these perturbations are some which do not depend on the angles. 
The sufficient condition for the limited growth of these perturbations in the higher modes 
is not satisfied. Thus, even when the principal mode is stable the higher modes can be un- 
stable against perturbations which are independent of the angles. 

In order to study this case we have carried out numerical experiments to analyze the 
growth of small perturbations of the form 6~=aexp(--r=/l ~) for the first axially symmetric 
mode 41 with /= I~12/(I+I~[2) ~, 0< k~l. In this case ~o is stable against exponentially increas- 
ing perturbations and all such perturbations for the higher modes depend onthe angle ~. We 
might note that for the ]([~I 2) relationships we chose, the propagation of a light beam is not 
accompanied by singularities. This follows from an analysis in the paraxial approximation 
and also from the fact that in this case infinite energy is required for the formation of a 
singularity. Thus, if there is an instability it must be oscillatory. This conclusion is 
confirmed by the numerical solutions of (i) with the boundary conditions. 

~(O,t )=  O, r  O. 

Equation (i) has been approximated by a second-order implicit three-layer finite-differ- 
ence scheme in both variables [12]. A regular model was used for the radial variable r. 
After correct transfer of the boundary conditon from infinity [13] the resultant system of 
algebraic equations was solved by the pivotal method. The accuracy of the calculations 
was monitored from the conservation of the invariants 

The worst relative accuracy of conservation for the results quoted was FI)N0.5. 10 -4, f(~)~3.10 -4. 

An analysis of the radial distribution of the field amplitude in the propagation of the 
perturbed first mode showed the presence of considerable oscillations in the radial distribu- 
tion and related oscillations in the amplitude at the center of the beam. In Fig. 2 we show 
the radial distribution of the field amplitude of the first mode 

[~;~(r,T)l=Al(r,'O for/=[T[2/(l-~-I ~]~)1/r y=0,5; a=--0.4; 

Z = 1 for several values of r. It can be seen that the field energy varies from being con- 
centrated at the center of the beam to being concentrated at the periphery. In the first case 
the amplitude distribution is close to that in the principal mode, whose energy is approxi* 
mately equal to that of the first mode. We can thus give an upper limit to the maximum pos- 
sible oscillation amplitude 

i--k 

A (0, o) \4 /  ; / ~ ]*12<~-k), tr ~ ,  

where Io and 11 are the energies of the principal and first modes for the given nonlinear 
relationships. Thus as k§ (saturation of the nonlinearity) the oscillation amplitude must 
decrease. Figure 3 shows how the amplitude of the first mode A~(0, T) varies with T for y = 
0.5 at values of k = 0.25, 0.375, 0.5, 0.75 (curves 1-4, respectively) and at a fixed initial 
perturbation a = -0.4, I = i. The reduction in oscillation amplitude with increase in k is 
obvious from the graphs. Usually 11/~>>I, and so for small k the ratio A*(O,T)/A(O,O) can 
reach high values. The relatively large error in our calculations means that it was not 
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always possible to determine this ratio and to continue the calculations until the maximum 
field amplitude A*(0,~) was reached. 

If /=I~I 2~, p~i , singularities can be formed during the propagation of a perturbed 
mode [2, 14] and the nature of the breakdown in the higher modes is different from the case 
where no singularities are formed. An analysis of the radial distribution of amplitude of 
the perturbed first mode with axial symmetry when p~l has shown that the singularity is 
formed mainly as a result of the field in the central part of the beam and the field dis- 
tribution at the periphery changes very little during the propagation process. This is 
due to the fact that when p = 1 an energy [0<<[~, is focused into a singularity, but when 
p > 1 the focused energy is infinitesimally small. There are no noticeable oscillations 
in the radial amplitude distribution. Figure 4 shows the radial amplitude distributions 
of the first mode A1(r,~) for /=[~]2; y=i; a=0,4; i=i. 

Thus from a mathematical point of view the higher modes in all the models of anonlinear 
medium which we have considered turn out to be unstable. Nevertheless, higher modes in a 
medium with a saturating nonlinearity can be observed if the initial field distribution does 
not depend on the angles and is close to the initial distribution of the corresponding modes. 
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